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Principle of Symmetric Bracket Invariance
as the Origin of First and Second Quantization

T. Garavagliab>* and S. K. Kauffmann?

Received August 11, 2001

The principle of invariance of the c-number symmetric bracket is used to derive both the
quantum operator commutator relatidp p] = ih and the time-dependent Solifiger
equation. A c-number dynamical equation is found, which leads to the second quantized
field theory of bosons and fermions.
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1. INTRODUCTION

Occasionally in the development of quantum theory and quantum field the-
ory, something fundamental and simple is overlooked. This is the case with the
introduction of the ordered Poisson bracket and its consequences. It is shown in
this paper that the time-dependent Sxtinger equation and the commutation re-
lation between position and momentum, the quantum bradket][= i h (Dirac,

1958, pp. 85-87), is in fact a consequence of the principle of invariance under a
one-parameter canonical transformation of the c-number symmetric bracket. Fur-
thermore, the relation between expectation values and classical dynamics, and
the probability interpretation of quantum theory are a consequence of this proce-
dure. In addition, a c-number dynamical equation is derived, which provides the
fundamental condition for the boson and fermion operator commutation relations.

Although the idea of the symmetric analog of the Poisson bracket has ap-
peared in the theory of differential geometry and algebraic ideals (Droz-Vincent,
1966), and in classical constraint dynamics (Franke aalh#g, 1970), its clear
relevance to fundamental physics has not until now been demonstrated. The idea
of the ordered Poisson bracket and related symmetric and antisymmetric brackets
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has been introduced in Garavaglia and Kauffmann (dias-stp-96-17) to provide a
c-number analog of the usual boson commutator and fermion anticommutator for
guantum fields. From the basic concept of the ordered bracket, the antisymmetric
and symmetric brackets are defined. The principle of invariance of the antisymmet-
ric bracket under a one-parameter canonical transformation leads to Hamilton's
dynamical equations, and the generator of this transformation is the Hamiltonian.
Whatis new and surprising is that the analogous property for the symmetric bracket
leads to Schaodinger’s equation, and the generator of the one-parameter canonical
transformation in this case is the expectation value of the Hamiltonian operator.
Furthermore; these c-number brackets provide a natural derivation of the boson
and fermion commutation relations, when operator infinitesimal time development
equations are sought, which have the c-number equations as a displacement state
expectation value.

In this paper dimensionless phase space coordinates are used sugh-+that
0i/%, Pi = Pi/Po,andge po = h. Foragiven maskl,, the natural units of length,
time, and energy are respectively= 2rh/Mqc, T, = 2rh/M,c?, and E, =
MoC? = hw,. If My is chosen to be the Planck mabs, = /hc/Gy, then these
units can be expressed in terms of natural physical constants (Planck’s reduced
constant, the speed of light, and the Newtonian gravitational const&y;).

2. COMPLEX PHASE SPACE AND C-NUMBER BRACKETS

Ordinary classical dynamicsis usually discussed in terms of real-valued phase
space vector variables of the for@, (9). However, its relation to quantum theory
and to fermion systems is much more transparent if one changes these real phase
space vector variables to the complex-valued dimensionless phase space vector
variablesd = (§ + i p)/+/2 and their complex conjugaté = (§ — i p)/+/2. In
terms of components of both of these types of phase space vector variables, the
usual Poisson bracket of ordinary classical dynamics is
i~ \ 00k 0Pk 9k 9Pk
-y (ﬂ o9 _ 2% 3f*> . 2.1)
— \0ax da,  dak day

From the second Poisson bracket representation given above, we abstract the semi-
bracket, which we call the ordered Poisson bracket,

of dg of 99
fogi= — 2 -2 . % 2.2
ttog) Xk: dacda;  0a dar (2:2)

We note that whilg f o g} is linear in each of its two argument functiofisand
g, it is neither antisymmetric nor symmetric under their interchange. However, it
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does satisfy the identityf o g} = {g* o f*}, whichisinalgebraic correspondence

with the Hermitian conjugation formula for the product of two Hilbert-space
operators, that isfg = (g fA')T. From Eq. (2.2) we define the c-number sym-

metric and antisymmetric brackets

{f.gle ={fogt£{go f}, (2.3)

where we noté f, g} = —i{f, g}_. We readily calculate the c-number symmetric
and antisymmetric brackets for the componenta ahda*,

{a, 8} =0={a,aj}+, {a,af}s =4 = £{a], ai}s. (2.4)

Infinitesimal canonical transformations, which leave the brackets invariant,
are now introduced. The canonical transformations of ordinary classical dynam-
ics are mappings of the complex phase space veétess A(é, a*) anda* —

,&*(5, a*), which preserve the antisymmetric c-number Poisson bracket relations
among the complex phase space vector components. Also we consider the canon-
ical transformations of complex vector phase space mappings, which preserve
the c-number symmetric bracket relations among the complex phase space vector
components. It is important to note that the complex phase space vectors are re-
lated to ordinary classical mechanics phase space coordinates in the case of the
antisymmetric bracket; however, in the symmetric bracket case they correspond to
the expansion coefficients of either quantum wave functions or the c-number limit
of quantum fields. _

Specializing now to infinitesimal phase space transformaténrs A =
a -+ sa(a, a*), we readily calculate the c-number antisymmetric and symmetric
brackets for the components Afand A" to first order indd andsa*,

d(3ay) , B(sa) 0(3ay) | 906a)

oar dar BEY GE?

{AL AL = (A A} = (2.5)
GICED) N a(say)
REY, oa’
If we now impose the requirement that this infinitesimal phase space vector trans-
formation preserves the c-number antisymmetric or symmetric bracket relations

among the complex phase space vectors, we obtain the three equations,

90ay) __d(a) 00 aGa)  dpa)  006a))

oar T oar ' o0& da; da; dar

(A, A} =8 + = +{A}, Ai}x. (2.6)

, 0. (27
The last of these equations is independent of the value oftegmbol, and it is
satisfied in particular for one-parameter infinitesida@that are of the form

G

sa = —i(ax)g—;, daf =i(3h)—, (2.8)
] |
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wheresa is a real-valued infinitesimal parameter &B(¢h, a*, 1) is a real-valued
generating function. We thus can readily verify that the last equation in Eq. (2.7)
is satisfied. From the two immediately preceding equations, Eg. (2.8), we obtain
the form of the equation that governs any continuous one-parameter trajectory
of sequential infinitesimal canonical transformations in the complex vector phase
space:

da G .da* 3G
or —i = —,
dA aq* di GEN

In the most general circumstan€ may have an explicit dependencexiThese
equations may be rewritten as the pair of real equations:
dg 090G dp G
dr  ap’ dr ag’
which are generalized Hamilton’s equations.

For the case of ordinary classical dynamics, antisymmetric bracket case (for
which F = + in Eq. (2.7)), the first two of the group of three equations that
were given above are satisfied identically for the one-parameter infinite&énal
of the generating function form that has just been given in Eq. (2.8). However,
for the symmetric bracket case (for whigh= — in Eq. (2.7)), the first two
of that group of three equations impose the following constraint on those real-
valued generating functiond(3, a*, 1) of continuous one-parameter canonical
transformation trajectories:

3°G 3°G

=0=——. 2.11
RETEY dafoaj (2.11)

2.9)

(2.10)

3. FERMION C-NUMBER DYNAMICS

For the symmetric bracket case, which we call fermion c-number dynamics,
the generating functions of the continuous one-parameter trajectories of sequential
infinitesimal canonical transformations are constrained to be constant or linear in
each ofd anda*, as well as real-valued. The most general form for the generating
function is therefore

G(d &, 1) = Go(X) + Y_(B(Ma + G(Ma) + Y Y  Gm(M)aam, (3.1)
k | m

whereGo (1) is real ands i (1) is a Hermitian matrix. Upon putting this constrained
form for G into the complex phase space form of the generalized Hamilton’s
equations, Eq. (2.9), we arrive at

da
| T gl ()‘) + Z GIJ ()")a]! (3-2)
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which is a (possibly) inhomogeneous linear equation of matrix@&thger form.

If G (1) = 0, the preceding equation is a general homogeneous type afdoher
equation, whereas ifji(1) o« (L — 1'), it is a general propagator type of
Schiodinger equation. It is clear that the c-number dynamics of the symmetric
bracket case must be linear and describable by ao8afgér type equation.

The generating functions of the continuous one-parameter canonical trans-
formation trajectories are usually considered to be observables of classical the-
ory when they have no explicit dependence on the parameter. Thus we restrict
G(3, a*, 1) to have no explicit.-dependence. In the present case it is always
possible to suppress the inhomogeneous part if the Hermitian n@tgixs not
singular. This is done by making the canonical transformation

a—>A=a+) (G (3.3)
j

It is easily verified that these transform@gdalso satisfy the c-number symmetric
bracket relations. In terms of the#gs, the generalized Hamilton’s equations
become

CdA

which are of the homogeneous Satliriger matrix equation form, whilg itself
becomes

GAA)=Go— Y > (G HmGIm+Y > CimAAn, (3.5)
| m | m

which has no inhomogeneous term.

4. DERIVATION OF THE TIME-DEPENDENT
SCHRODINGER EQUATION

The result found in Eqg. (3.4) following from the invariance of the symmet-
ric bracket can now be used to derive the time-dependenb8ictyér equation.
Choosing the parametetto be a time parametéand assuming that the canonical
transformation, Eq. (3.3), has been made, the dynamical equation, Eq. (3.4), for a
time-independen®;; becomes

ia(t) = (g(@ &), &} = D Gija(t). (4.1)
J

Keeping the last term only in Eq. (3.5) and changi&g» a and G(A, A*) —
g(a, d*), the real-valued generating function becomes

g@ a) =) > a(tGia) (4.2)
J



598 Garavaglia and Kauffmann

The Hermitian matrix elemer®;; is associated with an Hermitian operatér
such that

Gij = (i1Glj),

where|i) form a orthonormal complete set of states with identity operater
> li)(i]. A general state expanded in this basis is

w®) = aml, (4.3)
with a;(t) = (i | ¥(t)). From Eq. (4.1), Ifollows the relation
a0 =iz =3 Y10
= iZJZ|i><i|é|j>aj(t)
= Zinjj|i><i|é|j><j RZ0)

= Ié|w(t)>i%|w(t)> = Gly(t)), (4.4)

which is the time-dependent Sddiinger equation whe8 is identified with the
Hamiltonian operatoH (g, p).

We see here the difference in the interpretation of the quanét{€sin the
case of the antisymmetric and symmetric brackets. In the former these are just the
complex coordinates associated with positiprand momentunp; ; whereas, in
the latter, they represent the expansion coefficients of a general quantum state in
terms of an orthonormal basis. Both brackets lead to the completeness relation

@f{ly®), (v®)ila’) = (@ —4a). (4.5)

This is seen from

@ifly ), (w®+la) = E E (ai{a, aj}«li)(j 19"
i
=> "> (als;liyj 19 = (alllg) = 8(q — ).
i j
(4.6)

5. DERIVATION OF [q, p] = ih

The principle of symmetric bracket invariance leads to quantum mechanics
because it leads to the time-dependent 8dimger equation and to a derivation of
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the Dirac bracket relatior§j| p] = i. First, one considers the results of the invari-
ance of the antisymmetric bracket under a one-parameter canonical transformation.
The time development of a real functidifa, a*, t) is given by

: of
f=—i{f,H}_ +—, 5.1
L HE + = (5.1)
and the dynamical equations for the coordinates are
. : . o0H
a =—i{g,H}_. =—
i i{a, H} I oo
(5.2)
. : . oH
a'=—ifa", H}_=i—.
: {a’, H} I o3

These are equivalent to Hamilton’s equations of classical mechanics.

The invariance of the symmetric bracket under a one-parameter canonical
transformation gives dynamical equations for the coordinates (wave function ex-
pansion coefficients in this case). Itis convenient to write Eq. (4.1) and its complex
conjugate as

.oa A L
i—=G-
ot
- (5.3)
a ~
—j — 3*.
ot

These are Scbhdinger’s equations fa anda* (i can also be a continuous index).
The time development of a real functidi{d, a*, t) = &* - F - &, which depends
on the generator for the one-parameter canonical transformati@ng*) =
a* .G -4, is given by

e s = s . Kl 5 s aF s
f:a*.F-a+a*-F-a+a*~E-a
(5.4)
— I af
f =—ia* . [F,G]-d4+ —,
[F.Gl-a+ -

which follows from Eq. (5.3). Heré& andG are Hermitian matrices (operators).
For the discrete index case

f@a,n=>"> (@ HilFOIG ) = @wOIF®vE), (6.5)
i

and

f(@a, é*,t)=//<w(t)| PY(PIF)IP) (P | ¥(t)) dpdp, (5.6)
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for the continuous indep. The form ofg(d, a*) shows that classical results are to
be associated with expectation values. WEeis identified with the Hamiltonian
operaton-] and|i) is an eigenstate of the Hamiltonian with eigenvalkgghe bi-
linear form ofg(&, a*) leads to the statistical interpretation of guantum mechanics.
This is seen from

H=3a H a—ZE.m (WOH®), (5.7)
with
(V| y) = Z lail® = 1.
The classical dynamics case (antisymmetric bracket result, Eq. (5.1)) for the

Hamiltonian
p2
H(a,a") = — + V(q), 5.8
(aa) =5 +V(@ (5.8)
gives the result forf (a, a*) = q that § = p/m. For the c-number symmetric
bracket result, Eqg. (5.4), to give a result forthat corresponds to classical me-
chanics, one identifie& with the Hamiltonian operatoH (p, §), and observes

thatq = p/mwhen [, p] = i. This is found from the expectation value
f=@OIf o) = w0 OO0, (5.9)
with [¢) = |¢(0)), U(t) = exp(it H) and the relation
df P
gt = WOILH, f1+ = Ol ), (5.10)

which corresponds to Eq. (5.4) when Eq. (4.3) is used. Choof{tig= § and
using the Hamiltonian operator found from Eq. (5.8), one finds

dg p2 P
= woi | £ a]wor - 5.1)
when [, p] =i, which of course is equivalent t(ﬁ,[éT] = 1. The appropriate

correspondence between force and the potential function follows from Eg. (5.10)
when f (t) = p. This gives the result

d oV
P v 52w 512)
since the quantum bracket relation betwgeandq implies
Y
(5, V(@) = —i D), (5.13)

9q
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This is of course the well-known result of Ehrenfest (1927), and the appropriate
states to use in the evaluation of these expressions when associating them with
corresponding classical equations is the minimum uncertainty displacement states
discussed in Section 6. These results clearly shows that quantum mechanics is a
consequence of the principle of symmetric bracket invariance, and this is clearly
an advance in the understanding of the origin and properties of quantum theory.

The above proof depends upon the association of the quantum operators with
observed quantities through the prediction of distributions for the spectrum of the
operators and expectation values. Naturally, the generating furg{&ona) given
in Eqg. (4.2), leading to the invariance of the symmetric bracket, is of this form.
SinceG can be identified with the HamiltoniaH (§, p), this requires the exis-
tence of the expectation values for the operafoesidq. A related derivation of
the result §, p] = i, which depends upon the association of distributions and ex-
pectation values of the self-adjoint operat§=nd p with the classically observed
values, is found in Garavaglia (1985), and a similar approach is found in Heslot
(1985). The argument of Dirac (1958, pp. 85-87) leadingjt] = i is incorrect
because it depends upon the nonclassical concept of noncommuting quantities in
the definition of the classical Poisson bracket.

It is easily seen that the argument above for the nonrelativistic Hamiltonian
leading to the quantum bracket result applies to the relativistic Dirac Hamiltonian
associated with a fermion. Furthermore, the importance of the natural relation
between the expectation value of an operator and its observed classical values,
which emerges from the principle of invariance of the symmetric bracket, also
resolves the dilemma of Dirac where he finds the eigenvalugsmibe+-c (Dirac,

1958, pp. 261-263). The correct result for a free relativistic Dirac particle of
massm, momentump, and energyE is

—_p
== =8, 5.14
d=c =5 (5.14)
where, usingh = ¢ = 1 and the conventions of Berestetsdial. (1982),
p=ypm
E=ym (5.15)

y=1v1-p%
This follows from the time derivative of the expectation value
= (Y ®Ialy (1)

—i W(t)l[q, HIlv (1)
= u(p)yu(p)/2E = p/E, (5.16)
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where for a free Dirac particle
H=y%" p+y°m,

<X | W(t» = w(X, t) = J%u(p) e*ipx

px=p’t—p-T (5.17)
u(p) = u'(p)y°
u(p)u(p) = 2m.

This removes the need for the notion of Zitterbewegung, which is associated with
the Heisenberg operator but not with the observed mean value of the operator
through the expectation value.

6. QUANTUM FIELD OPERATORS ASSOCIATED WITH & AND a*

For each index, one can associate an operator with the complex nunabers
through the matrix element

a = (al&la). (6.1)

As shown in the next section, the operator relations that are consistent with the
infinitesimal time development equations for both bracket relations, Egs. (4.1) and
(5.2), involving the complex numbesgs are

{a, alls =6 =[4&,4]].. (6.2)

Introducing the notatioa = a;, we can discuss both the case of boson operators
and fermion operators without loss of generality. In both cases, the states to use in
Eq. (6.1) are defined as displacement states

la) = D(a)|0). (6.3)
In the boson case, the displacement operator is
D(a) = '8, (6.4)

such that
o(@) = o(p) = 1/v2, o(q)o(p)=1/2
o%(A) = (a A’la) — (a] Aja)® (6.5)
a= (alala), a* = (ala|a).

The interpretation o in this case is clear. The stdi®) is the minimum uncer-
tainty state, and tha s are the complex numbers that appear in the antisymmetric
bracket, Eq. (2.4), and Hamilton’s equations, that is, classical coordinates.
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The fermion case can be treated in a similar manner; however, there are some
modifications in interpretation. The displacement operator in this case is

D() =& 5%, £ =g et

~ ) ) ) 6.6
|a) =D(§) e7'?/2|0) = cos(&]) e'?/?|0) + e*'¢/2sin(&])[1). ©©)
This give the following:
a=(alala) = sin22|$| g
a* = (ajaf|a) = sin22|55| e '?
(6.7)

(alafaja) = sirf|¢], (alaa’la) = cos |£|
(ajaa’ +afajla) =1,
when
a/0) =af|1) =0
&1) = |0), a'|0) = [1).
An analogous calculation fer(q) ando (p) for the fermion case gives
o (g) = (1 - sinf(2l¢]) coS(¢))"/?/~/2
a(p) = (1 — sirf(2l]) sir’(¢))/?/+/2 (6.8)
o(@a(p) = 0.

The lastinequality in Eg. (6.8) does not violate the minimum uncertainty inequality,
o(qQ)o(p) > 1/2, since §, p] # i, and§ and p are not conjugate coordinates.

7. INFINITESIMAL C-NUMBER TRANSFORMATIONS AND THEIR
RELATION TO BOSON AND FERMION OPERATORS

The infinitesimal transformations induced by the c-number symmetric and
antisymmetric brackets have analogous relations involving operators, and these
lead naturally to the boson and fermion operator relations, Eq. (6.2). For the anti-
symmetric bracket, the transformation associated with a titis

a (dt) = & (0)+idt{H (&, a"), a(0)}-, (7.1)
and the appropriate operator equation to associate with this c-number equation is
& (dt) = &(0) +i dt[H(a a'), & (0)]. (7.2)

With & = &(0), the commutation relation f; anda! in this case follows from
the relation §, p] =i, which is a consequence of Eqg. (5.11), and is the boson
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commutator
[4, a1 =3;. (7.3)

The associated classical Hamiltonian is found from the normal ordered matrix
element

H(& &%) = (a: H :|a), (7.4)
with |a) = |ag)|ay) - - - |an), Wherela; ) are the minimum uncertainty states defined
in Eq. (6.4). Here normal ordering is defined as moving the operéfote the
left according to the boson commutation operation. In this way, the c-number
equation, Eq. (7.1), is a consequence of the expectation value of Eq. (7.2), using
the displacement stat¢®) found from Eq. (6.4).
The infinitesimal c-number transformation associated with the symmetric

bracket implies both the boson commutation and fermion anticommutation rela-
tions. For the c-number symmetric bracket, the infinitesimal transformation is

aj (dt) = & (0) — i dt{g(d, a"), & (0)}-, (7.5)
and the appropriate operator equation to associate with this is
& (dt) = &(0) +i dt[g(a &"), & (0)], (7.6)
with
g=3 .64 (7.7)

and & = §(0). It is now shown that Eq. (7.6) yields the c-number equation,
Eqg. (7.5), when the operators satisfy either the boson commutator or fermion
anticommutator relation, Eq. (6.2). This follows from using

[6.84]=-)_ > (&, a]1a+4al[&, &l)Gj«
ik

=Y "(5;&)Gjx, boson case
K

—Z Z((l — Zéjfé;)ék + 2&}“-ék)ij, fermion case
7K

= —ZGikﬁk, (7.8)
K
and one finds

& (dt) = > (8 — i dtGy))a;
i

(@& (dv)a) = ) (@l(8; — i dtGy;)a;1a) (7.9)

]
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a (dt) =) (8 — i dtGy)ay,
j

which agrees with Egs. (4.1) and (7.5). Here the stités defined as the direct
product of displacement staté&) = |ag)|a;) - - - |an), found from either Eq. (6.4)
for the boson case or Eq. (6.6) for the fermion case.

8. QUANTUM FIELDS

It is seen from the above that the infinitesimal transformations obtained in
both the antisymmetric and symmetric bracket case have corresponding operator
equations, if the operatoés andéljT satisfy the boson commutation relations in
the former case and the fermion anticommutation relations in the latter. Thus the
expansion of quantum fields in these operators is a natural consequence of the
relations found for the associated c-numbers. In both cases the usual quantum
field expansion (Berestetskit al., 1982) is

Vi 0 = Y G OO +B 0w ), ®.1)

whereBiT(t) = & (pio < 0), with four-momentum time componepg, is an anti-
particle creation operator. The associated c-number fields are found by forming
the matrix element with the displacement stateappropriate to either the boson

or the fermion case.

The Dirac equation, which is of Sabdinger type, can of course describe a
c-number fermion system, but the Klein—-Gordon and Maxwell equations, although
they are linear, are not of Sadihger type. For example, in one spatial dimension
a discretized version of the Klein—Gordon equation is

8 — (1/(2A%))%(Gi+2 — 2G + Gi—2) +m?g; = 0. (8.2)
This can be replaced by the first-order equation pair
G =p. b =0/Q2A))*Ci+2— 20 +G-2) — MG, (8.3)

which is a version of Hamilton’s equations for the particular Hamiltonian (time
evolution generating function and observable)

o1
H@ B) = 5 D (P + (/@AY (Gt — G 1 +1PG). (8.4)
k
The constraint equations, Eq. (2.11), on fermion system c-number generating func-

tionsG, which were previously written in terms of the compléx#*) vector phase
space variables, translate in terms of the r§aip) vector phase space variables
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into the pair of real-valued constraint equations:
°G %G ’G  9%G
9gi9q;  dpdp;’ aGiap;  9G;9p

For the discretized Klein—-Gordon Hamiltonian given above, we have that

9?H 1\? 9?H
(= 0 and —— =0, 8.6
90i 90 +2 (ZAX> ? IPi0P;+2 (8.6)

which is not in accord with the first of the preceding pair of c-number fermion
system generating function constraint equations. Thus the Klein—Gordon equation
is not of Schodinger type and cannot describe a c-number fermion system.

We have seen that c-number fermion dynamics is necessarily described by a
Schiddinger type equation, that is, is necessarily already first quantized, and it has
no classical version. Therefore, its quantization with anticommutators is inevitably
second quantization. On the other hand, the boson commutation relations are con-
sistent with the results of the antisymmetric c-number bracket equations, and the
first and second quantized theories involving bosons commutation relations can be
directly related to the classical theories through the displacement states, Eq. (6.4).

(8.5)

9. TIME DEVELOPMENT OF & AND §

From the infinitesimal transformations that preserve the brackets, it is pos-
sible to obtain the global representations of the operators that produce the time
development of the coordinataes For the c-number antisymmetric bracket case,
the time development operator obtained from Eq. (7.1) is

a(t) =UMa =" Mg
s—(H)a = {H,a}-
82(H)a = {H, {H,a}_}_, etc
a(0) =

As an example, iH = a*a, then one finda(t) = e ''a. Under time development,
one can show that the antisymmetric bracket is invariant,

{a(t), aj()}- = {a&, aj}- = djj.

The proof is as follows:

(9.1)

o0 o0 n+m
@o.ar- =35 W T a, sn(Hya;-

n=0 m=0
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p
Z('t? Z(p m)'m|{sp "(H)a;, 5M(H)a!) -

(1t)P82(H)
Z

IR =" Mg, a)_=5;. (9.2
In the abovep = n + m, and use has been made of

82 (H){a, a)- = i ( p) (82" (H)a, 8T(H)ar}_,
m ]

m=0

which follows from the Jacobi identity
s_(H){ai, af}- = {5_(H)ay, &} + (&, 5_(H)a]}_.

The time development generated by the c-number symmetric bracket can be
studied in a similar manner. Here the time development operator obtained from
Eq. (7.5) for the c-number phase space coordinates is

at) =V(ta =e "0y
5+(@a =1{0,a}+

2 (9.3)
§7(9)a = {9, {0, &}+}+, etc
a(0) =
andg = a*- G - 4. Since
(ga) =) Giaj,
i

one finds
. (it)?
a(t):Z 3ij — ItGjj +7;Gika]‘+“~ a;j. (9.4)
]

Defining the operato6, which must be Hermitian sinagis real, as done after
Eq. (4.2), we see that Eq. (9.4) becomes

a(t)—ZM( —|tG+QG +- >|j)aj

]
= (i1 e Cly) = (i | y(t), (9.5)
sincea; = (j | (0)) = (j | ¥).
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It is now easy to demonstrate that the invariance of the c-number symmetric
bracket results from the unitary transformatld(t) = e *©. This is seen from

fait), &)} = (10O, IO}
=D Y WHOOIK ), (v IHAUT)))
k |

HO @K O )] (e, &)+

=22
=YY GOMIK U180 = (10OUTM)]) = 8.
k |
(9.6)

In the case of the quantum boson or fermion operators, the invariance of
the commutation relations, Eq. (6.2), follows from the unitarity of the time de-

velopment pperatdf} (t) = e '*H obtained from Eq. (7.2) for the boson case or
U(t) = e 'C obtained from Eq. (9.5) for the fermion case, such that

a) =0'malm =) (‘t)”fﬂé&
n=0 '

D(H)a =[H, &]
D4(H)a = [H, [H, &]), etc. 9.7)
40)=4&.

S

[& (), & (1], = UT(0[4&, a]1.0(t) = 3.

10. ANGULAR MOMENTUM

It is interesting to note that the c-number antisymmetric bracket generates
the algebra of orbital angular momentum, and that there is a c-number differential
operator representation of tB&(2) Lie algebra. The components of orbital angular
momentum are (for, j, andk = 1, 2, or 3)

=i axaa, (10.1)
i

with €jc antisymmetric in its indices ang»3 = 1. For the classical coordinates
a, the following relations are found:

{li,lj}- =i Zéijk|k,
K

{121;). =0
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{li,qj}- =i Zéiijk, {li, pj}- =i Zéijk P (10.2)
k k
A differential operator representation for t8&(2) algebra is given by
Ji=J14iJ,
- 9 A 0
Jy=a*—, J_=a
* da dar

J 1 a* 9 a8
3 2 Ja* oJa

[Ja, Jxlu(j, m) = £J.u(j, m)
[J., I_Ju(j, m) = 2Jsu(j, m) = 2mu(j, m) (10.3)
a*j+maj—m

u(i, m = JGTFm)I(j=m)!
J2u(j, m) = K(K 4+ 1u(j, m) = j(j + Lu(j, m)

R = (el 4ol
2\ dar da

Jeu(i, m = Vi@ + 1) —m(m=£ u(j, m=+1).

For the functionsi(j, m) the inner product is define, with> j’, as

R L et mu(,m)
(u(j, m) fu(j’, m)) = Z”N(j,m)/o iagiia 99
= 8jj Smm (10.4)
e
NG = G5 mi - mi

witha = p €9.

11. CONCLUSIONS

In this paper it has been shown that both quantum theory and the quantum
field theory of bosons and fermions are a natural consequence of the principle of
invariance of the symmetric bracket, a concept that is analogous to the bracket
invariance principle that appears in classical dynamics. Just as the invariance of
the c-number antisymmetric bracket under a one-parameter canonical transfor-
mation leads to dynamical equations, which determine the classical dynamical
flow in coordinate phase space, the invariance of the c-number symmetric bracket
under a one-parameter canonical transformation leads to a dynamical equation,
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Eq. (7.5), which determines the dynamical flow of quantum states. In the former
case, the dynamical equations are Hamilton’s equations; however, in the later,
the dynamical equation is a time-dependent 8dimger type equation, Eq. (3.4),
which is equivalent to generalized Hamilton’s equations, Eqg. (2.9) or Eg. (2.10),
for the real partgy and imaginary parp; of the coordinates; (t) = (i | ¥(t)).

The truly remarkable consequences of the principle of invariance of the symmet-
ric bracket are the derivation of the time-dependent &tdinger equation and the
quantum bracket relatio§[ p] = i h. This argument makes the time-dependent
Schiodinger equation a consequence of bracket invariance, and it replaces with
a logical derivation the heuristic conjectures of Sxhinger (1926a,b,c) leading

to the discovery of his famous equation. Furthermore, it remdye8][= i h and

the time-dependent Sattinger equation from the status of postulates of quantum
theory. Along with these results comes the association naturally of expectation
values of quantum operators with corresponding classical quantities, and the sta-
tistical interpretation of quantum theory. In addition, the c-number time develop-
ment equation, Eq. (7.5), found from this principle provides a natural condition
for the emergence of the quantum field theory of bosons and fermions, when
the antisymmetric bracket is associated with the boson operator commutator and
the symmetric bracket is associated with the fermion operator anticommutator.
It is clear that both the first quantized and second quantized theories of bosons
have an associated c-number dynamics, namely, classical dynamics and classical
field theory. These are found from the expectation values and matrix elements
of operators using boson minimum uncertainty displacement states. However,
fermion c-number dynamics is not classical dynamics, but it is already a first
quantized theory, as seen from the derivation in Eq. (4.4). The second quan-
tized version is the quantum field theory of fermions. The c-number coordinates
in this case satisfy the c-number dynamical equation, Eq. (7.5), and they are
found as matrix elements of fermion operators using the fermion displacement
states.

It is clear that the fermion dynamics resulting from the symmetric bracket
invariance, allows the gauge couplings that are known to lead to renormalizable
theories for fermion dynamics, that is, QED and QCD. The old four-fermion
theory of beta decay, which did not require the intermediation of the W boson,
clearly has an equation of motion that involves fermion phase space variables in
a nonlinear fashion, which thus cannot be of the (necessarily linearp&oher
equation type that is here required by invariance of the symmetric bracket. This
does not mean that effective theories with nonlinear fermion interactions are not
useful approximations. Examples of such approximate theories are the Hubbard
model (Fradkin, 1991) and the composite vector boson model (Garavaglia, 1986),
where nonlinear interactions may be introduced using path integral methods with
auxiliary fields.
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